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Asymptotic estimates are determined for the densiry of eigenvalues. The existence of 

points of concentration of the eigennumbers is established. Results for the natural fre- 

quencies of shells and the eigenvalues in stability problems are compared. Conditions 
are written down for the solvability of the linear equation describing the stability in the 

presence of small perturbatiom. 

1. The stability equation for given stress resultants in the middle surface of a shell 
whose radii of curvature are almost constant is 

DAAAA@,,,,, + EhA$,(Dn, + h,,AA (XI@,_ + az@,J = 0 

a&,, = Nr; a%n =Ns (O,<m,%<l), w=AAQ, 

A@=@,,,+U&,, A$)= R;l@,xx+R;l@,yy, cp=EhA,@ 

(1-f) 

Here 2, y are Cartesian coordinates, w (r, g) is the normal shell deflection. cp (z, F) 
is the stress function, d, is the resolving function. ‘D is the cylindrical stiffness, E, v 
is the Young’s modulus and Poisson’s ratio, -h = con& is the shell thickness. R, z cons& 
Rz z const are the radii of curvature, - N, and -Ns are two constant normal compres- 
sive forces. 

A rectangular shell of nonnegative Gaussian curvature, hinge-supported along the sides 
is considered 

O<ZQU, O<ydb 
The shell buckling mode,-to the accuracy of a normalized constant;-is 
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tD 
?lm 

=sinknzsink,y (kR=n~~a,km=nsn~b,n,~==,2,...) 

The eigennumbers are easily found 

+a* = 
D (k,,% + k,2)4 + Eh (Rz-lkn2 + Rl-‘k,,,2)2 

(alkne + a,km2) (k,2 + km”)2 
(1.2) 

Not 6, The expression (1.2) written down here is the asymptotic of the eigennum- 
bersasn--.n - maunder arbitrary boundary conditions when a simple edge effect 
exists during stability [ X- 31, 

&I = in -b Q k)J JZ / a, h = In -I- l/z + 0 (&)I n / a, kn = [n + 1 + 0 (E)] x / a 

Here e is a small parameter characterizing the rapidity of edge effect damping during 
stability. Analogous relations are also valid for km. It is understood that only those bound- 
ary conditions are considered in which the parameter Lm does not enter. 

let us utilize the asymptotic formula (1.2) to obtain estimates of the density of the 
eigenvalnes. According to an idea of R.Courant [4], let us define the number of eigen- 
values .A (&) less than a given value h,, approximately as the ratio between the domain 
area Sa’in the knkm plane within which is the eigenvalue h < h,,, and the area of one 
cell Ak,Akm, i.e., 1. 

A (ho) = AknAkm p dQdk, s (1.3) 

Let us introduce the notation 
B/z.3 

kn2 + kmz = ra, &R, y- 
n 1 

Formula (l. 2) becomes 
Dr4 

’ = re (at CO.9 0 + as sin2 0) + 
a*.;& C0S2 0 + sin* 0)* 

hW (~2~ cosz 8 + a2 sin2 @) (f-4) 

In the new variables the relationship (1.3) is e I 

A (ho) =2 _f$- j s rdrd0 
’ e,o 

If the inner integral is taken. and the value of 9 from (1.4) is substituted, then we have 
for the average number of eigenvalues less than a given value & (the subscript on the 
parameter d will henceforth be omitted throughout) 

4 

A (W = h&j J h (81 co.9 0 + a, sin2 0) d0 + & 
e* _ 
s1 

hZ (ar cos* 0 + az’sin2 0)2 - 
8, 6, - 

4Dh’ 
- 7 (x cos2 @ + sine 8)+ de (t.51 

Integration is over that part of the quadrant kn > 0, km > 0 within which the expression 
in the square brackets is positive. After term-by-term differentiation of (1.5). the rela- 
tionship s (A) i d.4 (h) -=- 

SO -70 
- = I1 + I?, dh (1.6) 

is obtained for the density of the eigenvafues. 
The function A (A) is a nondecreasing function. Since the expression under the second 

integral can be significantly greater than the expression under the first integral, the minus 
sign which appears in finding rs from (1.4) is omitted in (1.5). The following notation 
is inserted into (1.6) 
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0% 
ab 

so==, I*= 1 
SD s (21 co@ 9 + aI sins 0) dfl 

01 

Z 
~ = B % 

s 
[ Ys + 2v (1 - V) 4 + (1 - @4Y ) sine 0 = E 

E, [f (1 - E) (cl - 4) (ca + 4)l”’ 

$=v (h#O), 
4Dh' v - ‘1x 

-Ep--= tl’, q (I- x) - (i- v) = c’ 
v -i 9x a2 

q(1 - x) + (I- v) = c21 B= 
2nD [ tj2 (1 - X)2 - (1 - v)‘]“’ 

If x > u, the z- and y-axes must be interchanged, and then the analyzed case 0 f x < u 
is obtained because shells of only nonnegative Gaussian curvature are considered. 

Four cases are possible for such x : 

c2 > 0, Cl > 1; cr>o, c1<1; c,<o, Cl>li s<o, Cl<1 

The first case is thus C, > 0, cr > 1. The radical in-Z, is positive for E1 = 0, Es = 1, 

and the whole integral reduces to (see [S]) 

Is = 2B+ [cl (c2 + i)]-‘1’ {[I? - 2v (I- v) c2 + l/2 (1 - 42c1C2 (C2 + 1) (C2 - l)]x 

x K (q) - l/2(1 - u2)c1(c2 + 1) E(q)+[ 2v(i, - 17)~s + 1/2(1-~)?C1C2 (1 - ca -k d(C2 + l)‘)n@* q)) 

Here K (q), E (q), II (x, q) are the complete elliptic integrals of the first. second and third 
kinds, respectively, iu Legendre form, where 

q= 
( 

2tl(u - x) ‘it a2hh + VI"‘ 

(v-flx)(q+l) J ’ x= 
rl(l-xX)+1--. SB._ 

rl+1 ’ nD[(u-qx)(~+‘l)l”’ 

In this case 
I, = (ar + 4 I a 

The remaining three cases and the special case when a, = 0 are considered analog- 

ously. 

2. All the cases can be combined as follows: 

For v-qx<o 
0 (A) = 0 

For u -qx>O (‘1 < 1) 

(2.1) 

s 04 = Ao + a2 [AK (q) + A2E (q) -I- Ad (x9 q)l 
SO nD [(v - rlx) (I+ Ml” 

rl(i- xl + I- v 2rl b- x) 
x=--Yq+l 

or 
x = [9 (1 - x) + i - VI (0 - rlx) 

s (h) 
-=Bo+ 

a2 tBlK (q-l) + B,E (q-l) -i- Bdl f-x, q)] 
SO xD [‘q (u - X)1”’ 

x = [rl(i -x) + i- VI (v - rlx) rl+i 
2q (u - x) 

0t %= q(1-x)$-l-V 

$7 = WI @ - x) / @ - 9x) (‘1 + W’ 
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Here Aor B, are certain COllStants; A,, A,, A,, B,, B,, B, depend on V, cl, ~2. 

Formulas (2.1) permit disclosure of certain properties of the density of the eigenvalues 
in problems of thin elastic shell stability. As follows from the formulas for Y - qX < 0 
the density of the eigenvalues is zero (see Fig. 1). Curve I in Fig. 1 corresponds to the 

existence of two poles for X < 1, Curve 2 to the 
3 existence of just the pole q, for X > 1 and Curve 3 

to X = v. 
For v - qX > 0 the density of the eigenvalues is 

different from zero, where as q - 0, the function s(h) 
tends to some constant connected with the density of 

the eigenvalues in plate stability problems, and for 

q = I the function s (A) has a pole (actually, for 

I 
,rl = 1 the argument of each of the complete ellip- 

tic integrals becomes one and the integral diverges). 

Fig. 1 Let Q be this pole. 
Since each of the coefficients in the integrals 

(a, # czs), can have a singularity, still another pole appears in the function if v < 1, then 

this pole is at the point r) = (1 - v) / (1 -__ X) (the denominator Y.+ vanishes). Let it be 

denoted by rb. If however u > 1 and X < 1, the pole is at the point sl = (v - $11 (1 - 

- x) (the denominator c2 vanishes). Let r13 be this pole. When v > 1 and X > 1,. 1 f 9 < 
< X / v , and this means there is no second pole. Since v > X, then ?b < rb. Depending 
on the quantities v and X , the quantity r~scan be either greater or less than ql. 

Finallv. when u coincides with X 
r)- 

s 6) co 
- = SO (1 _ q2p (co = con&) 

there exists just one pole at the point ?-I= 1. Precisely this case, probably, is of essential 

value for applied problems since the distribution of the eigenvalues starts at the point of 
concentration. Among this class of problems are problems on the stability of a longitud- 

inally compressed cylindrical shell and a sphere under hydrostatic pressure. As is known, 
these problems are solved in a classical formulation without determining the buckling 

mode PI. 
In the special case (as = 0) , the first pole rb is missing, and a pole can exist at the 

point q = 1 / (1 - X) for X < 1 or at the point q = i / tX - 1) for X > 1. However 

this pole does not exist for X = 1 . 
When the compressive stresses are equal (al = c%) , the function s (h) has just one pole 

at the point rl = 2, because the elliptic integrals of the second and third kind in the for- 

mulas vanish since their coefficients vanish, This latter case is reminiscent of the results 
obtained for the natural frequencies of shells in p. 81. 

3. The eigenvalue distribution can turn out to be useful in solving stability problems 
when there are small perturbations, for example, a small initial deflection. The linear 
equation describing the stability in the presence of small perturbations formally has the 
form A+--IhB@=f(z, y) (3.1) 

Here A and B are some positive-definite operators, h is the loading operator, f (I, y) 
is a function characterizing the small perturbations. The boundary conditions for (3.1) 
are homogeneous conditions. 
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For certain boundary -conditions let the eigenfunctions cR,,~ and corresponding eigen- 

values hnm be known for the problem 

A@,, - h,J?@,m = 0 

where the orthogonality and normalization conditions 

(@ii* ‘~,,) = 6i,6jm 

are satisfied for the former. Here Si,,, 6jm are Kronecker deltas. Let us represent the 
solution of (3.1) in the form 

(3.2) 

If the parameter X equals the least eigenvalue A NM (k = A,v,), then for the solvability 

of (3.1) (@NM’ f) = 0 (3.3) 

The subscripts N and M here denote the eigenfunctions corresponding to ANM. Condition 

(3.3) is the analog of the existence condition for the solution of the inhombgeneous 
Helmholtz equation when the characteristic parameter agrees with an eigenvalue. 

It has been established above that the distribution of the eigenvalues sometimes starts 
with the point of concentration, i.e. an infinity of different eigenfunctions have coinci- 
dent eigenvalues. 

As h -+ A,, all the aNM --* cm, where aNM/a,,,, = 0 (i),if fNM are of the same 
order in (3.2). Therefore, the representation of a shell with a small initial imperfection 
in the form of a system with one degree of freedom can result in great errors p-11] in 
this case. 

When lust one eigenfunction QD,, ,conesponds to the least eigenvalue, the condition 

for the solvability of (3.3) is satisfied more simply, and the replacement of a system 
with an infinite number of degrees of freedom with a system with one degree of freedom 
will not result in great errors. 

Another interpretation can be given to the solvability condition for (3.3). It is suffi- 

cient to recall [ll] that experiments on the stability of longitudinally compressed cylind- 

rical and spherical shells under hydrostatic pressure have huge scatter, and moreover, the 
magnitude of the experimental critical loading turns out, as a rule, to be considerably 

less than the classical loading. Loadings agre.eing with the classical critical loading 
were obtained in none of the experiments. This is associated With the fact that 

aNM-, m for li-+AN, (fNM#O) 

Precisely in these problems the distribution of the eigenvalues start with the point of 
concentration. 

The scatter is considerably less [ll] in experiments on the itability of cylindrical 
shells subjected to external transverse or multilateral hydrostatic pressure ; there are even 
individual experiments in which the critical exceeds the classical loading. For these 

problems just two eigenfunctions correspond to the least eigenvalue. and the changi in 
boundary conditions (of the hinged-support type) does not affect the magnitude of the 
critical pressure essentially since a simple edge effect exists during stability [2]. 
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ON EXTREMAL STRESSES IN THE PLANE PROBLEM 

OF THE THEORY OF ELASTICITY 

PMM Vol. 35. Np2, 1971, pp. 369-375 
S. A. KAS’IANlUK and T. I. TKACHUK 

(Kiev) 
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The problem of extremal stresses in the first fundamental problem for a half-plane and 
a circle depending on the stress distribution on the contour is studied by using estimates 
for the integral operators of plane elasticity theory. S. A, Kas’ianiuk solved the problems 
for the half-plane and G. I. Tkachuk for the circle. 

It is known from Cl]. p.293 and from @] that the stress components Xx, X,, Y, at the 
point z = 5 + iy in the first fundamental plane problem for the half-plane Y < 0 are 

defined in terms of the normal N(t) and tangential 2’ (t) stresses given along the s-axis 

by using the equalities X, $ Y, = 4ReO (2) (0.1) 

Y, - Xx + XX, = 2 [i@‘(z) f Y (z)] 


